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It is well known that in any conservative system that admits resonant triad interactions, 
a uniform (test) wavetrain that participates in a single triad is unstable if it has the 
highest frequency in the triad, and neutrally stable otherwise. We show that this result 
changes significantly in the presence of coupled triads : with coupling, the test wave can 
be unstable to a high-frequency perturbation. The coupling sends energy from the 
(weak) high-frequency source into particular low-frequency waves that grow even 
though they had zero amplitudes initially. This mechanism thereby selects these low- 
frequency waves from the spectrum of low-frequency waves available for triad 
interactions. Moreover, the instability persists in the presence of weak damping, 
provided the wave amplitudes exceed two thresholds. First. the initial amplitude of the 
test wavetrain must be large enough for the instability to dominate the damping. 
Secondly, the (small) initial amplitudes of the high-frequency perturbations must 
exceed a threshold in order for the low-frequency waves to grow to a prescribed 
amplitude. 

1. Introduction 
The purpose of this paper is to examine the stability of a monochromatic wavetrain 

to resonant triad interactions. A well-known result is that if a monochromatic 
wavetrain, which we call a ‘ test wave’, participates in a resonant triad involving itself 
and two perturbative waves in a conservative system, then the test wave is unstable to 
the perturbations if it has the highest frequency in the triad, and neutrally stable 
otherwise. This result is known in plasma physics as the ‘decay instability’ (e.g. 
Tsytovich 1970). It arises in many other systems as well, including electrical engineering 
(e.g. Louise11 1960), geophysics (e.g. Hasselmann 1967) and nonlinear optics (e.g. 
Harper & Wherrett 1975). It has been corroborated in laboratory experiments (e.g. 
McEwan 1971), and in (oceanographic) field observations (e.g. Neshyba & Sobey 
1975). (In the degenerate case of second harmonic resonance, this classical stability 
result breaks down; e.g. McGoldrick 1965.) For general discussions of resonant triad 
interactions in various physical contexts, see Bers (1972) or Craik (1984). See 
Hammack & Henderson (1993) for a recent review of resonant triad interactions 
among surface water waves. 

The usual result considers the stability of a test wave within a single resonant triad. 
Nevertheless, many systems that admit resonant triads also admit multiple triad 
interactions, so that a given wave can participate in several triads simultaneously, and 
distinct triads can be coupled to each other through these multiple interactions. In this 
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paper, we generalize the usual result by investigating the stability of a test wave that 
participates in a system of coupled triads. In $2 we show that the test wave is unstable 
to perturbations at lower frequencies (as it is in a single triad), but that it can also be 
unstable to a perturbation at a higher frequency (which cannot occur in a single triad). 
The coupled triads provide a mechanism to send energy from a (weak) high-frequency 
perturbation into particular low-frequency waves that grow even though they had zero 
amplitudes initially. 

One effect of this mechanism occurs when a test wave has the highest frequency in 
a continuum of triads, so that a continuum of low-frequency waves can potentially 
grow at the expense of the test wave. In this case a small, monochromatic, high- 
frequency energy source can determine which of the unstable modes actually do grow. 
In other words, coupled resonant triads can provide a selection mechanism to choose 
among a continuum of unstable wave modes. 

This work was motivated by experiments on capillary-gravity waves by Henderson 
& Hammack (1987; Part 1) and Perlin, Henderson & Hammack (1990, Part 2). In each 
experiment, they generated a test wave that was unstable to a continuum of waves at 
lower frequencies, and they expected to see energy transferred over a continuum of 
frequencies, as predicted by Simmons (1969). Instead they observed that a particular 
low-frequency triad was selected for each unstable test wave. The selected triad was 
found to be excited by a high-frequency perturbation at 60 Hz from the digital-to- 
analog converter in the computer that ran the wavemaker. The selection of a particular 
low-frequency triad for a given test wave frequency was empirically explained and 
predicted by considering it to be the consequence of a sequence of triad interactions 
that began with the 60Hz perturbation’s interacting with the test wave. Upon 
discovering this perturbation as the cause of the low-frequency triads, the authors 
replaced it with their own high-frequency perturbations at various frequencies and 
correctly predicted which low-frequency triads would be selected. However, they noted 
that according to the usual stability result, the test waves were considered stable to 
high-frequency perturbations, so that neither the 60 Hz noise nor their imposed high- 
frequency noise was expected to have affected the evolution of the test wavetrains. 

In 92 we consider the sequence of triad interactions discussed in Part 2 as a system 
of three coupled resonant triad interactions involving seven distinct wavetrains. We 
will show that this 7-wave model provides a selection mechanism for the observed low- 
frequency triads without violating the usual stability result. Instead, it generalizes this 
result to show that through triad coupling, a test wavetrain can be unstable to high- 
frequency perturbations. The model also shows that the instability can persist in the 
presence of viscous damping. Analysis of the seven-wave model in $2 shows that the 
high-frequency perturbations do not grow larger than their initial sizes, and identifies 
two threshold amplitudes necessary for the growth of the low-frequency waves. First, 
all wave amplitudes decay unless the test wave has a large enough amplitude for the 
instability to dominate viscous damping. Secondly, the (small) initial amplitudes of the 
high-frequency perturbations must exceed a threshold in order for the low-frequency 
waves to grow to a prescribed amplitude. Correspondingly, given the initial amplitude 
of the high-frequency noise waves, the second threshold provides a maximum 
amplitude for the unstable low-frequency waves. The analysis also predicts the 
approximate location of maximum growth of the low-frequency waves. 

The threshold amplitudes identified by this model are qualitatively consistent with 
the experimental results reported in Parts 1 and 2. Quantitative comparison with those 
experiments is inconclusive because the second threshold involves amplitudes of high- 
frequency waves, which were not measured. 
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Finally, we note that the seven-wave model is weakly nonlinear, so the amplitude of 
the test wave is assumed to be small, and the perturbating waves, even smaller. If the 
test wave is large enough to interact nonlinearly with itself, then this model is 
inadequate. A generalized seven-wave model that includes nonlinear interactions of the 
test wave with itself is discussed in the Appendix. A preliminary analysis of this model 
shows that the high-frequency perturbations remain small in the generalized model, 
and that the instability discussed in this paper persists. 

2. The 7-wave equations 
The theoretical model proposed in Part 2 for a particular test wave, e.g. one with a 

frequency of 25 Hz, can be summarized as follows. In the experiments described in 
Parts 1 and 2, capillary-gravity waves were generated in deep water at 25 Hz; the 
electronic equipment, operating at 60 Hz, generated water waves of very small 
amplitude at 60 Hz, and these waves fed a small amount of energy into a 35 Hz wave 
through a resonant triad. Next, the 35 Hz wave interacted with a 25 Hz wave through 
a second triad, to create a 10 Hz wave. Then the 10 Hz wave interacted with a 25 Hz 
wave in a third triad to create a 15 Hz wave. However, this 25 Hz wave had the highest 
frequency in the {10,15,25} triad, so the 10 and 15 Hz waves grew at the expense of the 
25 Hz wave, according to the usual stability result. In this way, the weak 60 Hz wave 
selected the { 10,15,25} triad from the continuum of triads available. In this scenario, 
the sequence of triads occurred at successively higher order in nonlinearity. The 
wavevectors had the proper directions for satisfying the kinematic resonance conditions 
owing to a directional instability (investigated by Perlin & Hammack 1991). 

The model we now present is based on this earlier model. However, the current 
model is quantitative, rather than conceptual. It treats the triads as a coupled system, 
rather than sequentially, so that all of the triad interactions occur at quadratic order 
of nonlinearity. Further, it allows viscous damping to compete with the instability, as 
occurs in the actual experiments. 

2.1. Amplitude equations 
Several two-timing procedures are known to derive equations for the slow evolution of 
the complex amplitudes of monochromatic wavetrains interacting in resonant triads. 
Zakharov (1968) and Simmons (1969) apply two of these procedures specifically to 
inviscid capillary-gravity waves. The resulting slow equations for the seven interacting 
wave amplitudes constitute a Hamiltonian system, with Hamiltonian 

H = A a l  v2 a3(a1 a, a3 +a: a,* a,*) + Ba, a4 a5(a, a4 u5 + a: u,* a,;) 
+ To5 cr6 a7(a5 U6 a, + a,* a,* u?), (1 a)  

where aj(t)  is the complex amplitude of the jth wave mode, aj*(t) is its complex 
conjugate with crj a?(t) its conjugate variable in the Hamiltonian system, { A ,  B, r;\ are 
positive, real-valued interaction coefficients, and v, = & 1. Precise values for the 
interaction coefficients can be inferred from Zakharov (1968) or Simmons (1969). We 
omit their values here; however, they are essential for a comparison with experimental 
results. The oj arise from the kinematic resonance conditions. The conditions for the 
first triad are 

v,w,+v,w,+cr,w, = 0, (1 b) 
a , k , + r , k , + r , k ,  = 0, (1 4 

wj = wj(kj), (1 4 
where wj > 0. Similar conditions hold for the other two triads. 
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To relate this Hamiltonian with the experiments of Parts 1 and 2, we identify: a, t, 
25 Hz (the test wave), a, f-f 60 Hz (the high-frequency source), a, f-f 35 Hz, a3 f-f 25 Hz, 
a4 -25 Hz, as- 10 Hz, and a7 ++ 15 Hz. Waves a3, a4, and a6 all have the same 
frequency (25 Hz), but they must have different wavevectors, in order to satisfy the 
kinematic resonance conditions. We assume that the mechanical means to generate a 
test wave at 25 Hz also generates perturbative waves in other directions at 25 Hz. Thus, 
the kinematic conditions on wavevectors (1 c) are satisfied, and a3 and a4 are present 
initially, but are very weak. 

The theory is for waves with small amplitudes, so that there is a small parameter 
6 < 1 that is a measure of weak nonlinearity. This parameter has been scaled out of the 
amplitudes in (l), so that it does not explicitly appear in the resulting evolution 
equations, in which derivatives are understood to be with respect to a slow time. 

The Hamiltonian in (1) implies a dynamical system consisting of ordinary differential 
equations. Alternatively, one could derive a system of coupled partial differential 
equations, for which (1) is replaced by a two-dimensional spatial integral. We present 
the ODE system in order to simplify the presentation. It can be obtained from the PDE 
system by denying all spatial variation of the wave amplitudes, or by denying temporal 
variation and permitting spatial variation only in the direction perpendicular to the 
paddle (i.e. in the direction of propagation of the test wave). The interaction 
coefficients for the two versions are different; both sets can be obtained from the 
references cited above. 

The corresponding system of evolution equations is non-dissipative, but viscous 
damping can be added following, for example, Bers (1972) or Craik (1984, p. 152). The 
result is a system of seven coupled, complex ODES of the form: 

* *  a; = - v1 a, - ia, a3, 

a; = - v, a, + ia,* a: -@a: a,*, 
a; = - v3 a3 + ia: a;, 

a: = -v4a4 + @a,* a;, 

a; = -v,a, + ips: a: + i ya,* a:, 
a; = -v,a, - iya? a,*, 

al, = -v,a, +iyaz a,*, 

where vj 2 0, and time has been rescaled by A .  The constants, p = B / A  and y = T/A,  
measure the relative strengths of the nonlinear coupling in triads 2 and 3 as compared 
to that in triad 1. The choice of signs for the nonlinear terms in (2) corresponds to 
choosing aj in (1) such that w1 = w2 + w3, w,  = w4 + w5, w6 = w5 + w,. This choice is 
consistent with the scenario of triad interactions discussed above for the experiments 
of Parts 1 and 2. 

2.2. Amplitude bounds 
To obtain bounds for the amplitudes, assume that v1 2 v, 2 v3 2 v, 2 v, 2 v, 2 v5 2 0. 
This choice is consistent with the experiments of Parts 1 and 2; the analysis that 
follows can be modified easily for other choices. In the absence of damping (vi = 0 for 
j =  1-7) equations (2) admit four Manley-Rowe relations (Manley & Rowe 1956), 
resulting in four conserved quantities in addition to the (conserved) Hamiltonian. With 
non-zero damping these four quantities decay as 

b1I2 + la,I2 < C, exp ( - 2 4  r ) ,  (3 4 
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where C, are constants that can be obtained from the initial conditions. The bound in 
( 3 4  applies when the left-hand side is positive at time t = 0. The initial conditions 
corresponding to the experiments are consistent with this restriction; they are : 

where t 4 1. These initial conditions correspond to a test wave with amplitude a6 that 
contains most of the initial energy, a perturbation a,, with a higher frequency than that 
of the test wave, a perturbation a,, with a higher frequency than that of the test wave 
and with an amplitude that can be initially zero, perturbations a3 and a4, which have 
the same frequency of the test wave but different wavevectors, and waves a, and a7 with 
lower frequencies than that of the test wave and with amplitudes that can be initially 
zero. Recall that in both (2)  and (4), the measure of weak nonlinearity, 6, has been 
scaled out so that a6 is O(1) rather than O(6), a,, a3 and a, are O(c) rather than O(Se), 
and a,, a5, and a, are o(e) rather than o(6e). 

From these initial conditions and from ( 2 )  (with t = 0), the constants are found to 
be 

where Kj 3 0, and Kl = O(1). Then for all time the perturbation amplitudes are 
bounded such that 

(6 a)  

(6 6) 
(6 c) 

(6 4 
Thus all of the high-frequency waves remain small, decaying exponentially from 
initially small amplitudes. In addition, 

la,(t)l d 4K,)lI2 exp ( - v3  r ) ,  
la,(t)l < c(K3)1/2 exp (- v, t ) ,  

la,(f)l d 4K,>"2 exp ( - 0, t> ,  

la,(t)l < e(K:J1/' exp ( -  v, t ) .  

where 

Thus, a,(t) cannot grow larger than O(E) unless a5(t)  also grows. 

2.3. Solution f o r  small times 
To determine whether or not a,(f)  grows, differentiate (2e)  and substitute in (2b,  d , f ,  g )  
to obtain 

a; + (v, + v6 + v,) a; + v,(v6 + v,) a5 = (yz la612 + Pzla,12 - y2(a7/ - pz[a,lz) a5 

+ pa, a3 a,* + iP( v7 - v2 + v6 - u,) a: a,* . (7) 
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The terms on the right-hand side of (7) are bounded, using (6), as follows: 
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la, a3 az1 < e3K1(K3)1’2 exp (- (2v, + v4) t) ,  

l i ( v 7 - ~ 2 + ~ 6 - v 4 ) a ~ a ~ l  < e2(KlK3)112exp ( - ( V , f V q ) t ) (  ~ 7 - ~ v , + ~ , - u v p l ,  

(8 a) 

(8b) 

(8 4 
At early times as and a7 are still small (because e 4 l), and (a,(t)I2 M C2 exp (- 2v, t) ,  

and 
I/32((la,lz - la412)>l < 2e2p2K, exp (- 2v4 t )  

so (7) can be approximated by a forced linear equation 

A,”+(v,+v,+v,)A~+v,(v,+v,)A, = C2y2exp (-2v,t)A,+At), (9) 
where A5(t)  approximates a,(t) for early times, and At) can be considered a known 
forcing function that arises from the perturbation waves. The forcing term has a bound 
that is uniformly valid in time of At) = O(e2 exp (- (v, + v4) t ) )  according to (8). 
However, in the system of interest here, a,(O) = 0 so that at early times, At) = 
O(e3 exp (- (2v, + v4) t)). 

To simplify (9), we assume that v5 = v7. This assumption is reasonable for the 
experiments of Parts 1 and 2. Results of numerical integrations of (2) using the values 
of v5 and v7 from Parts 1 and 2 support the predictions of the linearized analysis. 
Setting 

and using vs = v7, (9) becomes 
As = Cexp(-v,t), (10) 

(1 1) r+v,f = C2y2exp (-2v,t)[+flt)exp (v5 t ) .  

The homogeneous part of (1 I), with f = 0, has solutions 

{exp(-(Cy/v6)exp (-’6t>),exp((Cy/v6)exp ( - v 6 t ) ) ) ;  

this result can also be obtained from Miles (1984). Using the homogeneous solutions, 
one finds the solution of (1 1) via variation of parameters: 

(exp ( - v g  t )  - exp ( - v g  7)) exp ((v, + v5) 7)JT7) d7, (1 2) I1 
where A and B involve the initial amplitudes and growth rates of [. Here we take 
Cy > 0 without loss of generality. Then the first term in (12) decays in time. The second 
term grows at an approximately exponential rate for a while. This is the usual 
instability : with no high-frequency perturbations (At) = 0), the low-frequency triad in 
(2) is not affected by the other triads; the low-frequency modes of this triad (a5 and a7) 
grow if both are small initially and do not grow if both vanish initially. 

To investigate the growth of a,(t) if both a,(O) and a7(0) vanish (i.e. if both low- 
frequency waves are initially zero), we take B = 0 in (12). For the integral in (12) to 
grow appreciably, we need 

CY - %  1 
’6 

(13) 
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This is the first of two cut-off criteria. It says that the test wave must have an initial 
amplitude C such that growth due to nonlinearity dominates decay due to viscous 
damping. With ,At) uniformly bounded and small, the contribution from the second 
term in the integral is uniformly bounded; it goes to zero as Cy/v, + 00. The dominant 
contribution of the integral comes from the first term, in a small neighbourhood of 
7 = 0. 

The maximum growth of A ,  is obtained by differentiation using (10) and (12), 
evaluating the forcing term,At) at 7 = 0, assuming (13) holds, and considering the limit 
of r small. The forcing term contains the O(e3), a, a3 a,* term and the O(2), a,* a: term. 
In the experiments of Parts 1 and 2, a,(O) = 0, so that JTO) = pel ei. The time for 
maximum growth, then, is 

and the maximum amplitude is 

This amplitude provides a second cut-off for the growth of the low-frequency triad in 
(2). It says that the initial amplitudes of the perturbative waves, el and e2, have to be 
large enough to allow A,  to grow to an observable size. 

The above linearized analysis of the seven-wave model shows that a high-frequency 
perturbation can destabilize a test wave through coupled triads, as it cannot for a single 
triad. The amplitudes of the high-frequency perturbations do not exceed their initial 
sizes; rather, they channel energy from the test wave to the low-frequency waves. The 
growth within the low-frequency triads depends on two cut-offs: the first (13) is a 
viscous threshold for the initial amplitude of the test wave; the second (15) is a 
constraint on the initial amplitudes of the perturbations. 

This analysis is for a particular coupling of seven waves chosen to describe the 
experiments of Parts 1 and 2. A similar analysis follows for other systems of coupled 
triads. Instability will occur if and only if: (i) the low-frequency waves are members of 
a triad with the test wave; (ii) one of the low-frequency waves is coupled to a higher- 
frequency perturbation through a second triad interaction ; and (3 )  that higher- 
frequency perturbation is coupled to an additional high-frequency perturbation (the 
60 Hz noise in the present model) either through the second triad or through coupling 
within another triad. The direct coupling of a low-frequency wave to a high-frequency 
perturbation is the selection mechanism that chooses that particular low-frequency 
wave over the continuum of possibilities. The further, direct coupling with the test 
wave is the mechanism that provides the energy that allows the low-frequency waves 
to grow. 

These conclusions have been based on the solution of (9), but a related analysis 
shows that the solution of (9) does indeed remain close to that of (7) for early times. 
The behaviour of the solution of (7) is similar to that of (9), except that the time in (14) 
should be reinterpreted as a lower bound for the time of maximum growth. We have 
not analysed (7) in detail, because our main objective was to describe the instability, 
which can be seen from (9). 

Numerical integrations of (2) with y = /3 = 1 and without damping, i.e. vj = 0, are 
presented in figure 1. The amplitudes as functions of time are shown on the same scale 
for each wave to show the instability mechanism provided by the coupled triad model. 
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FIGURE 1 .  Wave amplitudes as a function of time from (2 )  with vj = 0 and y = /j = 1. The initial 

conditions are a,(O) = a,(O) = a,(O) = 0.01 +iO.Ol, a,(O) = a,(O) = a,(O) = 0, and a,(O) = 1 + i l .  

The high-frequency waves do not grow ; their amplitudes are inconsequential. 
Nevertheless, the low-frequency waves that both started out with zero amplitude grow 
and dominate the wavefield evolution. 

Finally, we compare the predictions of this theory with the experimental results from 
Parts 1 and 2 that motivated it. Selective amplification of low-frequency waves was 
observed in six of the eight experiments that involved test waves at 25 Hz and a high- 
frequency source at 60 Hz. Measurements of e ,  in the experiments were not available, 
so quantitative comparisons are inconclusive. We find that the predictions are in 
qualitative agreement, but quantitative disagreement with the experiments. In 
particular, agreement was qualitative because we have found a single value of e2 (and 
estimated values of C and EJ such that (15) predicts measurable growth in all six 
experiments in which selective growth was observed, and no measurable growth in the 
other two experiments; that is, an e, can be found so that the predictions of stability 
or instability implied from (15) agree with observations of stability or instability 
observed in the experiments. The comparison was in quantitative disagreement because 
the seven-wave model's predictions of the values of maximum amplitude, from (15), 
and their locations, from (14), underestimate those measured in the experiments. We 
speculate that other mechanisms in addition to the one discussed herein are responsible 
for the quantitative disagreement. Because the experiments that motivated this analysis 
were not designed to test its predictions, we feel that additional experiments are 
required for a quantitative test of the theory. Regardless, coupled triads are possible 
in many systems, including nonlinear optics, plasma physics, electrical engineering, 



Generalized stability criterion, for resonant triad interactions 75 

surface waves, and geophysics : thus the seven-wave model described herein provides 
a mechanism by which a test wave may become unstable to high-frequency noise, in 
contrast to predictions from the usual stability considerations. 

We are grateful to Joe Hammack for useful discussions and to the Mathematical 
Sciences Research Institute (supported in part by NSF grant DMS-9022140) where 
discussions on this work began. This work was supported in part by the NSF grants 
DMS-9304390, DMS-9257456, DMS-9022 140, and by the David and Lucile Packard 
Foundation. 

Appendix 
Here we add cubic nonlinearity to the evolution equation for the test wavetrain, 

which is the only one of the seven waves to start out with an initially finite amplitude. 
Thus the seven-wave equations are modified so that ( 2 f )  becomes 

(16) 

where M is a real-valued constant. With the addition of the cubic term, (3)-(5) 
remain unchanged. Thus, the cubic nonlinear correction does not change the result 
that the high-frequency perturbations remain small for all time. Equation (7) for 
a5 is modified so that the term (v, + v,) is replaced by (v ,  + v7 + iM[a,I2) in all three of 
its occurrences. The approximation for a, (under equation (8)) still applies so 
that in ( 9 )  the modification due to cubic nonlinearity is that (v, + v,) is replaced by 
(v6+v,+iMC2exp (-2v,t))  in both places where i t  occurs. We note that if we use 
the dimensional values for v,,vi,M (e.g. Perlin & Hammack 1991), and a,(O) that 
correspond to the experiments of Parts 1 and 2, then the self-interaction term is 
about three orders of magnitude smaller than the damping terms initially and is not 
expected to change the threshold predictions to a measurable extent. 

a, = - v, a6 - ia: a,* + iMla,12 a,, 
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